Abstract:In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
Abstract:Autonomous driving is an important and safety-critical task, and recent advances in LLMs/VLMs have opened new possibilities for reasoning and planning in this domain. However, large models demand substantial GPU memory and exhibit high inference latency, while conventional supervised fine-tuning (SFT) often struggles to bridge the capability gaps of small models. To address these limitations, we propose Drive-KD, a framework that decomposes autonomous driving into a "perception-reasoning-planning" triad and transfers these capabilities via knowledge distillation. We identify layer-specific attention as the distillation signal to construct capability-specific single-teacher models that outperform baselines. Moreover, we unify these single-teacher settings into a multi-teacher distillation framework and introduce asymmetric gradient projection to mitigate cross-capability gradient conflicts. Extensive evaluations validate the generalization of our method across diverse model families and scales. Experiments show that our distilled InternVL3-1B model, with ~42 times less GPU memory and ~11.4 times higher throughput, achieves better overall performance than the pretrained 78B model from the same family on DriveBench, and surpasses GPT-5.1 on the planning dimension, providing insights toward efficient autonomous driving VLMs.
Abstract:Autonomous driving is a highly challenging domain that requires reliable perception and safe decision-making in complex scenarios. Recent vision-language models (VLMs) demonstrate reasoning and generalization abilities, opening new possibilities for autonomous driving; however, existing benchmarks and metrics overemphasize perceptual competence and fail to adequately assess decision-making processes. In this work, we present AutoDriDM, a decision-centric, progressive benchmark with 6,650 questions across three dimensions - Object, Scene, and Decision. We evaluate mainstream VLMs to delineate the perception-to-decision capability boundary in autonomous driving, and our correlation analysis reveals weak alignment between perception and decision-making performance. We further conduct explainability analyses of models' reasoning processes, identifying key failure modes such as logical reasoning errors, and introduce an analyzer model to automate large-scale annotation. AutoDriDM bridges the gap between perception-centered and decision-centered evaluation, providing guidance toward safer and more reliable VLMs for real-world autonomous driving.
Abstract:Diffusion language models enable any-order generation and bidirectional conditioning, offering appealing flexibility for tasks such as infilling, rewriting, and self-correction. However, their formulation-predicting one part of a sequence from another within a single-step dependency-limits modeling depth and often yields lower sample quality and stability than autoregressive (AR) models. To address this, we revisit autoregressive modeling as a foundation and reformulate diffusion-style training into a structured multi-group prediction process. We propose Any-order Any-subset Autoregressive modeling (A3), a generalized framework that extends the standard AR factorization to arbitrary token groups and generation orders. A3 preserves the probabilistic rigor and multi-layer dependency modeling of AR while inheriting diffusion models' flexibility for parallel and bidirectional generation. We implement A3 through a two-stream attention architecture and a progressive adaptation strategy that transitions pretrained AR models toward any-order prediction. Experiments on question answering, commonsense reasoning, and story infilling demonstrate that A3 outperforms diffusion-based models while maintaining flexible decoding. This work offers a unified approach for a flexible, efficient, and novel language modeling paradigm.
Abstract:Masked auto-regressive diffusion models (MAR) benefit from the expressive modeling ability of diffusion models and the flexibility of masked auto-regressive ordering. However, vanilla MAR suffers from slow inference due to its hierarchical inference mechanism: an outer AR unmasking loop and an inner diffusion denoising chain. Such decoupled structure not only harm the generation efficiency but also hinder the practical use of MAR for reinforcement learning (RL), an increasingly critical paradigm for generative model post-training.To address this fundamental issue, we introduce MARVAL (Masked Auto-regressive Variational Acceleration), a distillation-based framework that compresses the diffusion chain into a single AR generation step while preserving the flexible auto-regressive unmasking order. Such a distillation with MARVAL not only yields substantial inference acceleration but, crucially, makes RL post-training with verifiable rewards practical, resulting in scalable yet human-preferred fast generative models. Our contributions are twofold: (1) a novel score-based variational objective for distilling masked auto-regressive diffusion models into a single generation step without sacrificing sample quality; and (2) an efficient RL framework for masked auto-regressive models via MARVAL-RL. On ImageNet 256*256, MARVAL-Huge achieves an FID of 2.00 with more than 30 times speedup compared with MAR-diffusion, and MARVAL-RL yields consistent improvements in CLIP and image-reward scores on ImageNet datasets with entity names. In conclusion, MARVAL demonstrates the first practical path to distillation and RL of masked auto-regressive diffusion models, enabling fast sampling and better preference alignments.
Abstract:Mixture-of-Experts (MoE) architectures scale large language models (LLMs) by activating only a subset of experts per token, but the standard TopK routing assigns the same fixed number of experts to all tokens, ignoring their varying complexity. Prior adaptive routing methods introduce additional modules and hyperparameters, often requiring costly retraining from scratch. We propose Sequence-level TopK (SeqTopK), a minimal modification that shifts the expert budget from the token level to the sequence level. By selecting the top $T \cdot K$ experts across all $T$ tokens, SeqTopK enables end-to-end learned dynamic allocation -- assigning more experts to difficult tokens and fewer to easy ones -- while preserving the same overall budget. SeqTopK requires only a few lines of code, adds less than 1% overhead, and remains fully compatible with pretrained MoE models. Experiments across math, coding, law, and writing show consistent improvements over TopK and prior parameter-free adaptive methods, with gains that become substantially larger under higher sparsity (up to 16.9%). These results highlight SeqTopK as a simple, efficient, and scalable routing strategy, particularly well-suited for the extreme sparsity regimes of next-generation LLMs. Code is available at https://github.com/Y-Research-SBU/SeqTopK.
Abstract:Retrieving relevant instructional videos from multilingual medical archives is crucial for answering complex, multi-hop questions across language boundaries. However, existing systems either compress hour-long videos into coarse embeddings or incur prohibitive costs for fine-grained matching. We tackle the Multilingual Video Corpus Retrieval (mVCR) task in the NLPCC-2025 M4IVQA challenge with a multi-stage framework that integrates multilingual semantics, domain terminology, and efficient long-form processing. Video subtitles are divided into semantically coherent chunks, enriched with concise knowledge-graph (KG) facts, and organized into a hierarchical tree whose node embeddings are generated by a language-agnostic multilingual encoder. At query time, the same encoder embeds the input question; a coarse-to-fine tree search prunes irrelevant branches, and only the top-ranked chunks are re-scored by a lightweight large language model (LLM). This design avoids exhaustive cross-encoder scoring while preserving chunk-level precision. Experiments on the mVCR test set demonstrate state-of-the-art performance, and ablation studies confirm the complementary contributions of KG enrichment, hierarchical indexing, and targeted LLM re-ranking. The proposed method offers an accurate and scalable solution for multilingual retrieval in specialized medical video collections.




Abstract:Current SMILES-based diffusion models for molecule generation typically support only unimodal constraint. They inject conditioning signals at the start of the training process and require retraining a new model from scratch whenever the constraint changes. However, real-world applications often involve multiple constraints across different modalities, and additional constraints may emerge over the course of a study. This raises a challenge: how to extend a pre-trained diffusion model not only to support cross-modality constraints but also to incorporate new ones without retraining. To tackle this problem, we propose the Cross-Modality Controlled Molecule Generation with Diffusion Language Model (CMCM-DLM), demonstrated by two distinct cross modalities: molecular structure and chemical properties. Our approach builds upon a pre-trained diffusion model, incorporating two trainable modules, the Structure Control Module (SCM) and the Property Control Module (PCM), and operates in two distinct phases during the generation process. In Phase I, we employs the SCM to inject structural constraints during the early diffusion steps, effectively anchoring the molecular backbone. Phase II builds on this by further introducing PCM to guide the later stages of inference to refine the generated molecules, ensuring their chemical properties match the specified targets. Experimental results on multiple datasets demonstrate the efficiency and adaptability of our approach, highlighting CMCM-DLM's significant advancement in molecular generation for drug discovery applications.